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ON THE QUALITATIVE INVESTIGATION OF MOTIONS USING ASYMPTOTIC METHODS OF 
NONLINEAR MECHANICS* 

K. Sh. KHODZHAEV and S. D. SHATALOV 

A method is proposed for qualitative estimation of oscillations defined by standard 
form equations, or equations with many slow and fast variables. The method makes 
possible the assessment of motion of the input system for all times, without hav- 
ing to resort to approximating exact solutions. As an example, the motion of a 
solid conducting body in a rapidly varying magnetic field is considered. 

The most general theorems on asymptotic methods for standard form systems /1,2/ and for 
systems with many fast and slow variables /3/ enable us to assess the closeness of the exact 
and approximate solutions in a finite time interval of order 1 le, where E is a small para- 
meter. For investigating the properties of solutions of these systems in an infinite time 
interval we use, first, the theorems of existence of exact solutions of a specific type (e.g. 
quasiperiodic) of the input equation, which are obtained by the methcd of integral manifolds 
/4/ and, second, theorems on the approximation of exact solutions over an infinite interval. 
Among theorems of the second type the Banfi theorem /5,6/ and its extension to systems with 
many fast variables is often effective /6/. 

However the application of such methods involves fairly rigid constraints on solutions 
of averaged systems, such as the requirement for uniform asymptotic stability in the case of 
Banfi theorem, requirement for the existence of a limit cycle in first approximation equations, 
etc. In particular, the case when an averaged system is in the first approximation "neutral", 
for instance conservative, is not included, and damping or the limit cycle are only disclosed 
in higher approximations. Moreover, the approximation in which, for instance, damped oscil- 
lations in an averaged system are first disclosed, does not yield an approximate solution of 
the original equation over an infinite time interval. This is already evident in the case of 
uniform exponential stability disclosed in higher approximations /I/. 

Below, we present a simple method of purely qualitative analysis of motions, using 
asymptotic methods of nonlinear mechanics under conditions in which only the closeness of the 
exact solutions of the input system to the approximate solutions obtained by the method of 
averaging is known only in a finite time interval. 

1. Qualitative comparison of exact and approximate solutions of standard 
form systems and of quasilinear systems with many fast variables. we denote by 
s(t) the unknown n-dimensional column vector that satisfies the standard form system 

z = EX (5, t, E), E ;:s 0 (1.1) 

and by z(mf(&m), t,s) the m-th approximation to s(t)obtained by the method of averaging 

zCtt") = j(m) + Etll (E'"', t) + . . . -t Em-’ U,_l(p(m), t) (1.2) 

The equation for EC"') is of the form 

dEcm)/at = Es1 (f'"') +- . . . _t Em& (E’“‘) L. cE(‘*) (y9, 8) (1.31 

It is assumed here that for t> &, E< E. and x from some domain D function X is contin- 
uous with respect to f and uniformly bounded together with the derivatives of order m with 
respect to z and e, and that functions 9, . .) 9, and Us,. .., h-1 are uniformly bounded to- 
gether with the first derivatives with respect to @"I) for E(We D and EcrnJED, t>tt, 

Let us consider function E,(~,E) defined by the relationship 

5 = 5, i- EU,(&,tf i- 1.. +Em-l u,-I(&, t) (1.4) 

(subsequent reasoning remains unchanged, if, as is frequently done in the method of averaging, 
&(t,&) is introduced by a similar relation containing the term 0 (Et”‘))). 

The following estimate of the closeness of functions 5, and &(m)is known-Let x(&,)ED,, 
where D, is a domain whose a-neighborhood, ct = O(E), coincides with I?. Using (1.4)we find 
that &,,ttO); for fairly small E g,(t,,)ED,. Let the solution of Eq. (1.3) with initial con- 
dition E@)(to) =f,(to) remain in U, within the interval t, < t < t, -I- T/F. Then for functions 
g(m) and E,with the indicated initial conditions and fairly small E< a+ the relation 
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I%, (f) - 5’“’ (f) I < C,Ern, to < f < to + T I & 

where c, and T are independent of E, is valid. 

Below, are indicated certain cases in which the properties of 

(1.5) 

functions %, in an in- _ 
finite time interval can be established from the respective properties of functions c(m). 

Let us consider some bounded domain DI and its e-neighborhood Db, 6 = d.~“‘-~, d = const> 
0, with Db C D,, and a single-valued scalar function V(E, E) determinate in Da,e<e,. It 

is assumed that laV/ t$l#O for %< Db, e<~ and that there exist 

Vnf = sup V (E, e), F= 

Theorem 1. Let there exist on the above assumptions a function V (%,4 such that for 

ar,y solution %cm) (t) of Eq. (1.31, which within any time interval remains of form t(O) < t < 

t(O) I- Tie in Da,the inequality 

V (E@) (t(O) + T/e)) > V@) (t(O))) + emmlWO (1.6) 

is satisfied for one and the same W,> 0 and all t(O) > t*, e < E+ and all indicated %cm) (t). 

Then there are no solutions %,(t) that remain in D, for all t> t,. 

Remarks. lo. Condition (1.6) is automatically satisfied when in D,, there exists 

function V(5.c) whose derivative by virtue of Eqs. (1.31 satisfies the relation V'>E~W~,W~: 
const > 0; it is then possible to assume W, = m,T. 

2O. It follows immediately from condition (1.6) that there are no solutions f(")(t) that 

remain in D, for all t&t* . To prove this let us assume that E("')(&,)E D6 and consider the 

time interval t,<ta t,i-kTIc, where k is an integer. At the end of this time interval func- 

tion V in any solution remaining in Db acquires an increment V(S cm) (to + kT/e)) - V (5’“’ (to)) > 

kern-l W,,. As the result, the value of function V(5.e) in solution E(m)(t)will exceed Vu for a 

fairly large k, which is impossible. 

Proof. Let us compare the sequence of "approximate" solutions %j(m)(t), j = 0, I,..., de- 

fined by conditions 

Ep (to) = E, (to). %P (to -I- T / e) = E, (to + T I 4, . . ., Ef”) (to i- 9 / 4 = Em (to i- iT / 4 

with the "exact" solution E,,,(t), %,(to)e D,, and show that it is impossible for Ej'"' (t) E De 

to exist in the intervals to + jT/e Q t < to + (j i- 1)Tie for arbitrarily large j. Let sjtrn) (1)~ 

D6, t, -+ jT/e < t < t, + (j + 1) Tie for all j . Then E&t,, + jTIe) E Db for all j. In conform- 

ity with the theorem function V(g, E) in solution E&m) (t) acquires for any t0 < t < t, + T/e 
the increment 

v (%o’~)(&I + T/E)) - V (&I@‘) (to)) > e*i’-Itt’,, (1.7) 

Let us consider the quantity V(&,,(t, + T/E)). In conformity with (1.5) 

I V (EnI (to i- T / e)) - V W”) (to -I- T I E)) I < F I E, (to + T I e) - go@“) (to + T I e) I < Fc,em (1.8) 

from which follows 

V (%, (f, -t Tie)) > V(%&")(t, + T/e)) - e”‘Fc, 
(1.9) 

Taking into account that v(%,("')(t,)) = V(t,(t,)), and using the notation w= W,(1- 

e*Fc, I W,), we obtain from (1.7) and (1.9) the estimate 

V (%,,, (fU +m Tie)) - V (5, (to)) > E”‘-~W (1.10) 

In the same manner (comparing with the increment V(kIcm)(t)) in the interval to + T/e < 
t < I, -I- 2Tie) we can estimate V (5, (to + 2TM). Similarly to (1.10) we obtain 

V (5, (1, -k 2T/e)) - V(%, (to + T/s))> em-' W 
which with (1.10) implies that 

J' (5, (to + 2Tie)) - V (%, (to)) > ~E~-~W (1.11) 

Using j +I functions %"(m), . . ., tj(m) we obtain 

V (%,,, !tu -1. (j + 1) Tie)) - V (5, (to)) Z (j t- 1) e+'W (1.12) 

which shows that for fairly large j the quantity V (f, (to f (j + 1) T/e)) exceeds V,, which 

is impossible. 

Consequently there exist such k and tl, t, + kT/e<t,,<t, +(k + 1)T/e that E#“) (tl) E Da. 
Then by virtue of (1.5) and of the relation 6 = de”‘-’ we obtain %, (tJ G D,. 

We prove in exactly the same way that Sm(t) is out not only of LI1 but, also, from any 
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06 -neighborhood of D,, 0 <I,8 is independent of E. 
It is useful to evaluate the time At in which solution %,(t) will necessarily leave 

domain D1 

Theorem 2. Let function V satisfy the conditions of Theorem 1 and, furthermore, the 
derivative v calculated with the use of Eqs. (1.3) be nonnegative throughout I)&. Let 
domain D1 be bounded by surfaces V = Cr and V = C,,c,> Cl, and all surfaces of the set 

V= C be closed. Then any solution E,,,(t), %,(t,)~Dr intersects surface V = Cz after 
some time, and leaves forever domain U,. 

Remark. We denote by S(C) a surface of the form V=C. From the defined above pro- 
perties of the derivative aVia% follows that the set S(C) has no singularities in D6. 
Since the surfaces are closed, they envelope each other. Let us suppose that surface S(C) 
envelopes S(C7 for any CCC"; 
side S (C,) ", etc. 

this enables us to use the expressions "outside S(C,)'; "in- 
The case when S(C") envelops S(C') is similarly considered. 

PrOOf. Let us, first, show that E,(t) will necessarily appear inside s(f?,). The 
"approximate" solution %0("')(t) (see above) can leave &, only by intersecting S (C,). If 
%0("')(t) leaves D6 in the interval t, < t,<to + Tie, then E,,,(t) leaves D, in the same 
interval through .S (C,) (if %,(tJ lies close to the boundary S (CA then %,(t) may "on 
the way" out of D1 pass through that boundary, (but this is immaterial). 

Let %$+ (t)~ Da when to< t< t, + T/e. Point %*@') (to + Tie) lies inside &'(C,) at 
distance p from it. The estimate for P (similarly to (1.8)) is p>em-lW,,IF. Point %,(t,+ 
T/e) by virtue of (1.5) is also inside S(C,) at distance p1 = 0 (p) from it. Examination 
of function %+m)(t) shows that point %&to+ 2T/e) lies inside S(C,) at distance Pz > PA- 
em-lWIF from the boundary. In the second interval, point E,,,(t) 
Then we have Ps> PI + 21?"-~w/F, etc. Consequently, point %,(t) 

cannot appear outside S(C,). 
which in conformity with 

Theorem 1 must leave D, does so through S (C,). 
Let now %,,,(Q lie inside S (C,), and let a certain number of solutions %j(m) (t), %o(m) (tl) = 

%, (tl), etc. remain in Db. The solution f,(t) cannot get beyond S(C,) already in the 
second interval t1 + Tie Q t< tl + ZTis, in the same way as previously solution E,,,(t) could 
not get beyond S(C,) in the corresponding interval. We are left with the case when some 
solution Ek(m)(t) leaves Da. We denote by Cm the maximum value of C for which S (C)lies 
completely in Da; CM--~ = O(P1). In th e interval E, -t kT/e < t < tl + (k -f- 1) T/E point %I&) 
may lie outside S(C,) only at the distance O(E"') from the boundary. It is now obvious that 
independently of whether %~+~(m)(t) gets or does not get beyond De, E,(t) does not reach D, 
also in the second interval. 

The following theorem follows from Theorem 2. 

Theorem 3. Let the surfaces S(C) contract to a point as C+C*. Let also for any 
arbitrarily small q>O exists a e(q) such that Theorem 2 is satisfied for E < 8 (11) < s* 
and Cz - c,= r). Then for fairly small E- the solution %,(t)beginning at some %=t(q) remains 
for ever in any arbitrarily small ?j-neighborhood of point V= C,. 

In accordance with (1.4) solutions s(t) of the input system (1.1) under conditions of 
Theorem 3 and fairly large t remain in the (n 4-O (E))-neighborhood of point V = C,. Let point 
V = C, correspond to the equilibrium position of some mechanical system. Then the oscilla- 
tions defined by the input system (1.1) qualitatively represent the superposition of form 
(1.4) of a slow evolutionary motion approaching the "nearly" equilibrium position and small 
rapid vibrations. For fairly considerable t the motion reduces to small rapid oscillations 
about the mean position which may be slowly wandering in a small region. Such oscillations 
differ only little from quasistatic. 

When surface S(C“) envelops S(C’) and C> C', we have from Theorem 2 that solution 

Em (t) moves for ever beyond surface S(C,). If Theorem 2 holds for fairly large, or even 
arbitrarily large C,, then r(t) defines the superposition of small vibrations on the "depart- 
ing" motion. 

After some evident alterations inTheoremsl-3 it is possible to assume the existence not 
of increasing but of decreasing functions V; for instance, it is possible to specify in 
Theorem 1 the condition 

Y (5'" (t(O) + Tie)) - V (EC”) (t(o))) < - e’“-lW,, 

assuming that i&V exists in Da. The use of such functions is particularly convenient in 
the example in Sect.2. 

It is possible to determine function .V when the first or several lower approximations 
of Eq. (1.3) admit the first integral V(~,E) = const, while in the subsequent approximation 
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that integral vanishes, and the sign of v' can be established. In this case we obviously 
have JJ' = O(em), where m is the ordinal number cf the approximation in which the integral dis- 

appears for the first time. The simplet is the most often occuring case when V = const is 

the energy integral and the relation v' = 0 is violated because of dissipation which is 

disclosed in higher appxoximations. 

The above theorems can be extended t-o systems other than the standard form system, if it 

is pclssible to prove the closeness of the exact and approxintite solutions in the interval T/E, 

and the derivation of the approximate solution reduces to the integration of iln autonomous 

system. Such are, for example, quasilinear systems with many fast variables. 

5' = sx (2, y, t, E)? y’ = A (x) y + f (r, t) (1.13) 

where z and y are the sought n- and Z-dimensional column vectors, and matrix A (z) is such 

that its eigenvalues h,(s), . . ..kz(s) satisfy the condition Re hi < -p (0, p = const. 
For system (1.13) we have /7,8/ 

where 

1 g,, - 5”“) 1 < c,E”‘, I z - r, 1 d @‘)@“‘, 1 z - rmcm) ( f c,(%~, ( y - y(m-r) (El”) t E) I < b,em (1.14) 
I I 

m-1 
$+I) (E,,, t, e) = qP+) (2 (Em, t, e), t, e) ,= 2 e’qi (z, t, e) (1.15) 

id 

and functions (pO,'pl,.. .,(P~-~ are determined by the linear equations 

‘P~‘=AT,+~, ‘~~‘=Arpl- -$X(Z,~o,~,O) (1.16) 

etc. which are integrated with 5 = const and initial conditions 'pO (z (to), to) = y (6,) and 'pi (~(1~)~ Lo) = 

0 (for details see /7,8/). In (1.14) z,,, denotes the solution of the standard form system 

* z, = PX (fm, l+@-l) hn, f, e), t, 6) (1.17) 

zm(m' is the I)L-th approximation to z,,, of form (1.2), and &,, and Ecrn) are introduced in system 

(1.17) as in system (1.1). An autcnomous system of form (1.3) is obtained for E(m); then [irnJ 

and 5, can be qualitatively compared using the theorem proved above. After this it is possible 

to establish the respective properties of the sought functions x(t)and y(f). 

2. Example. Motion of a conducting solid body in a high-frequency mag- 
netic field. The motion of a conducting solid body in a high-frequency magnetic field and 

the Foucault currents in the body are defined by the equations /9/ 

q’ = &A_’ (q) p, Jl’=& --kpTyp+ J ($)‘i) + E2Q(Q, JI), Li’ + Ri = _ (L,J)’ (2.1) 

where 4 and p are n-dimensional column vectors of dimensionless mechanical coordinates and 

momenta, A (q) is the matrix of inertia coefficients,e"qis the vector of generalized forces, i 

is the infinite-dimensional vector of dimensionless Foucault currents in the body, L and R 
are infinite-dimensional of induction coefficients and reciprocal resistance of nominal con- 

tours in which the body is divided /lo/, J(t) is the specified current in the contour which 

generates the external field, L, is the vector of coefficients of reciprocal induction of 

the contour with current J and the contour of Foucauld currents in the body, and t is the 

dimensionless time. The symbol pT (aA_‘/aq)p denotes a vector whose j-th component is JIT(cVA-~I 

3%) P. For equations defining electromechanical systems in discrete form see /lo/; Chapt.VII. 

In technical Froblems, such as that of orienting components by variable magnetic field, 
the "external" generalized forces are represented by friction, for instance viscous friction. 

System (2.1) comprises fast i and slow 4 and p variables and, being a particular case of 
(1.13) may be analyzed by the above method (a more complicated and more general method of 

V. M. Volosov was used in /5/). 
Let us consider the second approximation. After the elimination of fast variables, as 

indicated above, we obtain a standard form system in q2 and p2. Its approximate solution 
is of the form 

q?(?) = E(2) _1- eul (EC”), +), t), p?(*) = T$?) + w1 (EW, @), t) 

We specify functions u1 and vI so that their time averaged values (ul> and <ul) vanish, 
eliminating by this the arbitrariness of their selection. The equations for E(z) and n(') then 
assume the form /9/ 

(2.2) 

where -1 == (W(iJ), W = '12 iTLi is the energy of the magnetic field of Foucauld currents in 
the body, and i, (EC"') 

from the equation 

are the Foucauld currents obtained in the generating approximation, i.e. 
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Li,,’ -j- Ri, = -L, (E(2)) I’ (2.3) 

in which E(E) is assumed tc be a constant quantity. In other words, the mean value of the 
magnetic field energy obtained in the generating approximaticn is used in (2.3). The term 
(-Ef?EC2)‘)is a secondorder quantity, since E('J' 1r 0 (F). Matrix B is symmetric /9/, hence that 
term defines either dissipative or "swinging" forces. The effect of the magnetic field on 

the slow motions, thus, results in the appearance in the first approximation of potential 
forces and in the second of dissipative forces. 

Let us consider System (2.2) in the first approximation, i.e. without terms 0(e'). Such 

system is conservative with the Hamiltonian 

JJ = f +)~‘A-’ (5’2’) $2) + e.\ 

Hence we take function V of the form V=H/e. 

Let the first approximation function have a stable equilibrium position which is surround- 

ed by closed surfaces V = C, C = const. Let in the equilibrium position A = 0. We assume 
domain D1 to be bounded by two surfaces S (CJ and S (C,), Cl > C,, Cl, C, = 0 (11, the first 

of which envelopes the second. By virtue of Eqs. (2.2) the derivative V' is 

v‘ = _ s* (A-i+))T (B -t C) (A-'$') (2.4) 

where G is the matrix of coefficients of external viscous friction forces. Let us consider 
the case when matrix Bis positive definite. It can be shown that the inequality 

li ($"'(t(') -1~ T/E)) - v (5”’ (t(O))) < - &“-L@‘O (2.5) 

Indeed, if jq@)(t@)) [=0(i), then by virtue of (2.4) the increment of function V in solu- 

tion F(Z) (t), $2' (t) If, however, 

I P (t 0)) I 
over any At time interval is no greater than (-e* con&At). 

is small, then over a time of order 

we have, in conformity with the second of Eqs. (2.2), 1 lp 1 x 0 (1). Selecting T =ckAt,k>f, 

which affects only the constant c, in estimate 15, - g(m)l<+,,~m, we obtain the required 

inequality. 
Inequality (2.5) and formulas (2.4) are satisfied for any fairly large C2. This makes 

possible the application of Theorem 3. As the result, we find that the phase trajectory 

f@)(t), q(%)(t) appearing in domain Dr of the form described above, for fairly small 8 ultimately 

reaches some small n-neighborhood of the equilibrium position, and remains there. To this 

correspond input system oscillations that are qualitativeiy similar to damped oscillations 

approaching the quasistatic mode (further investigation is, however, required for proving 

that solutions of the input system approach quasistatic state). Similarly, when the matrix 

R -C G of total friction is negative definite, we have "increasingly swinging" oscillations. 
But it is necessary to prove in addition that oscillations under initial conditions close 

to the equilibrium position are so enhanced. 
Since matrix l3 depends on p , a case is possible in which the total nonpotentialforces 

E~Q~-EB~@) enhance oscillations near the equilibrium position, and are dissipative away 

from it. In such cases a limit cycle is possible. It can be similarly proved, at least in 

the case of a single mechanical degree of freedom, that t*(t) reaches a small neighborhood 

of that cycle. In the case of periodic function J(t) the oscillations for considerable t 

are qualitatively similar to quasistatic, and the system motions resemble either damped or 

increasing oscillations approaching the quasiperiodic mode. We would, however, point out that 

the existence of quasiperiodic solutions in cases when a limit cycle is disclosed in higher 

approximations, has apparently not been proved. 
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